1,635 research outputs found

    Strong monotonicity in mixed-state entanglement manipulation

    Full text link
    A strong entanglement monotone, which never increases under local operations and classical communications (LOCC), restricts quantum entanglement manipulation more strongly than the usual monotone since the usual one does not increase on average under LOCC. We propose new strong monotones in mixed-state entanglement manipulation under LOCC. These are related to the decomposability and 1-positivity of an operator constructed from a quantum state, and reveal geometrical characteristics of entangled states. These are lower bounded by the negativity or generalized robustness of entanglement.Comment: 6 pages and 1 figure. A brief discussion about the connection to asymptotic distillability was adde

    Quantum teleportation scheme by selecting one of multiple output ports

    Full text link
    The scheme of quantum teleportation, where Bob has multiple (N) output ports and obtains the teleported state by simply selecting one of the N ports, is thoroughly studied. We consider both deterministic version and probabilistic version of the teleportation scheme aiming to teleport an unknown state of a qubit. Moreover, we consider two cases for each version: (i) the state employed for the teleportation is fixed to a maximally entangled state, and (ii) the state is also optimized as well as Alice's measurement. We analytically determine the optimal protocols for all the four cases, and show the corresponding optimal fidelity or optimal success probability. All these protocols can achieve the perfect teleportation in the asymptotic limit of N→∞N\to\infty. The entanglement properties of the teleportation scheme are also discussed.Comment: 14 pages, 4 figure

    Observation of Jonscher Law in AC Hopping Conduction of Electron-Doped Nanoporous Crystal 12CaO7Al2O3 in THz Frequency Range

    Get PDF
    We have performed terahertz time-domain spectroscopy of carrier-doped nanoporous crystal 12CaO7Al2O3 showing the Mott variable range hopping at room temperature. The real part of the dielectric constant clearly demonstrates the nature of localized carriers. The frequency dependence of both the real and imaginary parts of the dielectric constant can be simply explained by assuming two contributions: a dielectric response by the parent compound with no carriers and an AC hopping conduction with the Jonscher law generally reported up to GHz range. The possible obedience to the Jonscher law in the THz range suggests a relaxation time of the hopping carriers much faster than 1ps in the carrier-doped 12CaO7Al2O3.Comment: 4pages 3figures. to be published in Phys. Rev.

    Ultrafast nematic-orbital excitation in FeSe

    Get PDF
    The electronic nematic phase is an unconventional state of matter that spontaneously breaks the rotational symmetry of electrons. In iron-pnictides/chalcogenides and cuprates, the nematic ordering and fluctuations have been suggested to have as-yet-unconfirmed roles in superconductivity. However, most studies have been conducted in thermal equilibrium, where the dynamical property and excitation can be masked by the coupling with the lattice. Here we use femtosecond optical pulse to perturb the electronic nematic order in FeSe. Through time-, energy-, momentum- and orbital-resolved photo-emission spectroscopy, we detect the ultrafast dynamics of electronic nematicity. In the strong-excitation regime, through the observation of Fermi surface anisotropy, we find a quick disappearance of the nematicity followed by a heavily-damped oscillation. This short-life nematicity oscillation is seemingly related to the imbalance of Fe 3dxz and dyz orbitals. These phenomena show critical behavior as a function of pump fluence. Our real-time observations reveal the nature of the electronic nematic excitation instantly decoupled from the underlying lattice

    The reduction of the closest disentangled states

    Get PDF
    We study the closest disentangled state to a given entangled state in any system (multi-party with any dimension). We obtain the set of equations the closest disentangled state must satisfy, and show that its reduction is strongly related to the extremal condition of the local filtering on each party. Although the equations we obtain are not still tractable, we find some sufficient conditions for which the closest disentangled state has the same reduction as the given entangled state. Further, we suggest a prescription to obtain a tight upper bound of the relative entropy of entanglement in two-qubit systems.Comment: a crucial error was correcte

    A comparison of the entanglement measures negativity and concurrence

    Get PDF
    In this paper we investigate two different entanglement measures in the case of mixed states of two qubits. We prove that the negativity of a state can never exceed its concurrence and is always larger then (1−C)2+C2−(1−C)\sqrt{(1-C)^2+C^2}-(1-C) where CC is the concurrence of the state. Furthermore we derive an explicit expression for the states for which the upper or lower bound is satisfied. Finally we show that similar results hold if the relative entropy of entanglement and the entanglement of formation are compared

    Momentum dependence of the energy gap in the superconducting state of optimally doped Bi2(Sr,R)2CuOy (R=La and Eu)

    Full text link
    The energy gap of optimally doped Bi2(Sr,R)2CuOy (R=La and Eu) was probed by angle resolved photoemission spectroscopy (ARPES) using a vacuum ultraviolet laser (photon energy 6.994 eV) or He I resonance line (21.218 eV) as photon source. The results show that the gap around the node at sufficiently low temperatures can be well described by a monotonic d-wave gap function for both samples and the gap of the R=La sample is larger reflecting the higher Tc. However, an abrupt deviation from the d-wave gap function and an opposite R dependence for the gap size were observed around the antinode, which represent a clear disentanglement between the antinodal pseudogap and the nodal superconducting gap.Comment: Submitted as the proceedings of LT2
    • 

    corecore